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INTRODUCTION 

Extensive studies on the biosynthesis of Amaryllidaceae alkaloids 

have been carried out during the past five years. It is apparent that 

the alkaloids are formed from the amino acids, phenylalanine and 

tyrosine, the former providing the aromatic C^-C^ portion of the alka­

loid and the latter the Cg-C^ unit. The role of phenyl-phenyl oxida­

tive coupling and specifically the precursor norbelladine in the bio-

synthetic scheme is well understood. Because of the availability of 

the alkaloids and suitable degradative pathways, lycorine, galantha-

mine, belladine, haemanthamine and tazettine have been studied most 

completely. All of these alkaloids have two oxygenated functional 

groups on the aromatic ring. Since many Amaryllidaceae alkaloids have 

an aromatic ring substituted by three oxygenated groups, it was desir­

able to determine whether the same biosynthetic pathways held for these 

alkaloids as well. 

It is well known that the alkaloidal one-carbon units such as 

methoxyl, N-methyl, and methylenedioxy groups are derived from formate 

or methionine. Anomalous results were found in the incorporation of 

formate into belladine and ambelline in Nerine bowdenii, where more 

than 40% of the radioactivity resided in the benzylic methylene group. 

To examine-^his result in more detail, radioactive formate and serine 

incorporation into the alkaloids of Sprekelia formosissima were studied. 
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HISTORICAL 

Ring Systems 

The Amaryllidaceae alkaloids (well over one hundred are known) 

may be divided into eight ring systems (Figure 1). Although a chemical 

R — N  

t t 

Î T 

IM—R 

Figure 1. Amaryllidaceae ring systems 
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CH2OH 
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Figure 1. (Continued) 

name for each is known, for brevity each ring system is given the name 

of its most common alkaloid. The eight ring systems are lycorine (1), 

lycorenine (2), crinine (3) galanthamine (4), montanine (5), tazettine 

belladine and ismine, may be divided into an aromatic C^-C^ and a hydro-

aromatic Cg-Cg unit represented by the heavy lines. Belladine differs 

in that it has an aromatic rather than a hydroaromatic C^-Cg unit. Is­

mine, having a biphenyl nucleus, is the only known Amaryllidaceae alka­

loid which contains no ""it. 

The large number of alkaloids found in the family can be attributed 

to the variations in oxygen substitution within these ring systems. The 

positions at which oxygen substituants may be attached in each nucleus 

are shown by arrows. The aromatic ring may be di- or tri-oxygenated, 

and the hydroaromatic ring may be mono- or di-oxygenated. The most com­

mon labelling pattern is a di-oxygenated aromatic ring and a mono-

oxygenated hydroaromatic ring. The belladine type has only one oxygen 

2 (6), belladine (7) and ismine (8) . Each ring system, except those of 
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substituent on the aromatic ring of the C^-Cg unit. -Haemultine (9 or 

3 4 
10), isolated from Haemanthus multiflorus by Boit ' contains no oxygen 

substituent on the hydroaromatic ring. However, there is some doubt 

that such an alkaloid exists^. Ismine has two oxygen substituents on 

the aromatic ring of the Cg-C^ unit, as shown (Figure 1). 

OH OH 

9 10 

All of the alkaloids contain a tertiary nitrogen except for ismine 

and some members of the galanthamine and belladine types, which may have 

either a secondary or tertiary nitrogen atom. 

Biogenesis of Amaryllidaceae Alkaloids 

Robinson^ proposed that lycorine (11) and tazettine (12) were de­

rived from a methylenedioxybenzyl amine (13) or from amino acid pre­

cursors. He assumed that the first stages of the biosynthesis of 

lycorine from amino acid precursors was oxidative coupling of one 

molecule of 3,4-dihydroxyphenylalanine, dopa (14), with a molecule of 

dihydroxydihydroindone (15a) or the carboxylic acid (15b) derived from 

dopa. Robinson did not describe the exact manner by which 15a couples 
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OCH-

11 

N—CH3 

12 -

N H2 

13 

CH2-CH-CO2H 

NH2 

14 

1S 3)R = H 

b)R=C02H 

with 3,4-dihydroxyphenylalanine to form the Amaryllidaceae alkaloids or 

the type of intermediate formed. 

In 1957 Steglich^ proposed a biogenetic scheme based on the condensa­

tion of a 3,4-dioxyphenylacetaldehyde (16) and _^-keto-glutardialdehyde (17) 
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with glycine to form 18 and 19, which serve as precursors of the C^-C^ 

and Cg-Cg units (Figure 2), Caranine (20), lycorine (11), lycorenirie 

(21) and homolycorine (22) may be formed (Figure 3) from the condensa­

tion of 3,4-dioxyphenylacetaldehyde and 19, while tazettine (12), buph-

anamine (23), crinamidine (24), crinine (25) (Figure 4) and galanthamine 

(26) may be formed from ^-ketoglutardialdehyde and 18 (Figure 5). 

g 
In 1953 Wenkert proposed a biogenetic scheme (Figure 6) for Amaryl-

lidaceae alkaloids based on the condensation of dioxyphenylethyl amine 

(27) with dioxyphenylacetaldehyde (16) followed by phenyl-phenyl oxida­

tive coupling. The final step is reduction of one of the aromatic rings 

9 to a hydroaromatic ring. Robinson critized this theory on the grounds 

that there is no reason for one aromatic ring to be reduced in preference 

to the other following the phenyl-phenyl oxidative coupling. 

In 1959 Wenkert replaced his original hypothesis by proposing a 

shikimic-prephenic biogenetic scheme for the Amaryllidaceae alkaloids^^. 

He suggested that shikimic acid (28) serves as the precursor of the 

C.-C unit and 29 serves as the precursor of the C,-C„ unit in the ly-
o 1 o Z 

corine (1) and lycorenine (2) systems. The double bond isomer (30) 

serves as the precursor of the 0^-0^ unit in crinine (3), galanthamine 

(4) and tazettine (6) ring systems. 

The ketamines (29 and 30) are derived from shikimic acid (28) by 

reaction with pyruvic acid (31) followed by amination and condensation 

(Figure 7). 
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Figure 2. Biogenesis of Amaryllidaceae alkaloid intermediates 
(Steglich) 
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Figure 2. (Continued) 

19 

OHC jC-CHgNHg 
O 

19 

4-

^CHO 

-O (O) 

-O 
16 

Figure 3. Biogenesis of the lycorine-lycorenine group of Amaryl-
lidaceae alkaloids (Steglich) 
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Figure 3. (Continued) 
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Figure 4. Biogenesis of the tazettine-crinine group of Amaryllidaceae 
alkaloids (Steglich) 
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Figure 4. (Continued) 
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Figure 5. Biogenesis of the galanthamine group of Amaryllidaceae alka­
loids (Steglich) 
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Figure 5. (Continued) 
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Figure 6. Biogenesis of Amaryllidaceae alkaloids (Wenkert, 1953) 
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Figure 6. (Continued) 



www.manaraa.com

15 

Ç02H 

-H CH3COCO2H 

HOgC^CHgCOCOgH 

HO'" OH 
I 

HO 28 31 

H02Ç,.^CH2CH2NH2 
.NH 

II II 
o 29 o 30 

Figure 7. Biogenesis of the prephenates 

The derivative (32) formed from shikimic acid and 29 undergoes an 

internal Michael condensation followed by hydration-dehydration and oxida­

tion-reduction reactions (Figure 8) leading to lycorine (11) and lycorenine 

(21). The shikimyl derivative (33) of the ketamine (30) is a precursor 

(Figure 9) to crinine*^(25), narwedine (34) and tazettine (12). 
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Figure 8, Biogenesis of lycorine and lycorenine (Wenkert, 1959) 
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Figure 9. Biogenesis of crinine, narwedine and tazettine (Wenkert, 1959) 
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Figure 9. (Continued) 
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Barton and Cohen^^ have proposed that many natural products may 

originate from coupling of phenol radicals. The carbon-carbon coupling 

of these radicals may be ortho-ortho, ortho-para or para-para. Examples 

of the first type (Figure 10) are shown by formation of dehydrodivaiiillin 

(35) from vanillin (36), dehydrodieugenol (37), dehydrodi-o-cresol (38), 

dehydrodi-£-cresol (39), dehydrodi-2,4-dimethyl phenol (40) and dehydrodi-

y^-naphthol (41). The best example of the relatively unknown ortho-para 

coupling (Figure 11) is the formation of Pummerer's ketone (42) from 

para-cresol (43). Examples of the more common para-para coupling 

(Figurei^j 12) are shown by the formation of 4,4 -dihydrodiphenyl (44) 

from lead tetraacetate oxidation of phenol (45), compounds (46 and 47) 

from 2,6-dimethylphenol (48), the ketone (49) from anthranol (50) and the 

dihydrophenanthrine (51) from oxidation of 52 via a diketone (53). 

Extending the concept of phenol oxidative coupling to the Amaryl-

11 lidaceae alkaloids. Barton and Cohen postulated that these alkaloids 

had a common phenolic precursor, norbelladine (54a). At the time that 

they postulated this phenolic precursor, the alkaloid belladine (54b) 

12 was unknown. The subsequent isolation of belladine from Nerine 

bowdenii and Amaryllis belladonna lent support to their hypothesis. 

Barton and Cohen proposed a biogenetic scheme for lycorine (11) 

and caranine (55) based on their hypothesis (Figure 13). Applying their 

biogenetic hypothesis to the structure of galanthamine (Figure 14) they 

predicted the location of the hydroxyl group and double bond in the 

alkaloid to be as shown in structure 26. Chemical verification for 

13 
this proposed structure of galanthamine was obtained by other methods 
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Figure 10. Examples of ortho-ortho phenol-oxidative coupling 
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Figure 10. (Continued) 
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Figure 11. An example of ortho-para pheno1-oxidative coupling 
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Fxgure 12. Examples of oxidative coupling of phenol radicals 
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Figure 12. (Continued) 
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OAc 

OAc 

OAc 
• 51 

Figure 12. (Continued) 

A biosynthetic type of synthesis of galanthamine has been accomplished^^. 

The galanthamine was formed in low yield from the norbelladine deriva­

tive (56) by manganese dioxide oxidation and lithium aluminum hydride 

reduction. 

The biosynthesis of lycorenine (21) and tazettine (12) by this 

theory presented some difficulties. If the nucleus of an alkaloid of 

this type were to be formed by a-- simple phenyl-phenyl oxidative coupling 

reaction, two separate fragments would be required to assume a given 

orientation prior to being coupled to form the alkaloid nucleus. How-

15 
ever, recent biosynthetic studies have shown (Figure 15) that tazet­

tine is formed from haemanthidine (57), which in turn is derived from 

haemanthamine (58). 
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Figure 13. Biogenesis of lycorine and caranine (Barton and Cohen) 
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CH30 
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Figure 14. Biogenesis of galanthamine (Barton and Cohen) 

OH 

58 

Figure 15. Conversion of haemanthamine to tazettine in vivo 
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OH 

12 

Figure 15. (Continued) 

Biosynthesis of the Amaryllidaceae Alkaloids 

The biosynthesis of various Amaryllidaceae alkaloids was investiga­

ted intensively during the period 1960 to 1965. The lycorine (1), 

crinine (3), galanthamine (4) and tazettine (6) group of alkaloids and 

the alkaloid belladine (54b) were the primary objects of study. The 

lycorenine (2) and montanine (5) groups of alkaloids have not been in­

vestigated due to their scarcity and the uncertainty of a suitable de­

gradation scheme for the radioactive montanine. 

The investigations, summarized in Table 1, have shown that tyrosine 

(59a) is a precursor of the hydroaromatic Gg-Cg unit but is never in­

corporated into the aromatic C^-C^ unit of the Amaryllidaceae alkaloids. 
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Table 1. Incorporation of amino acids into Amaryllidaceae alkaloids 
V 

Precursor Plant Alkaloid % inc. Ref. 

14 
2-C -Tyrosine Narcissus "Twink" Haemanthamine' (58) 

Norpluvine (60) 
Caranine (55) 
Lycorine (11) 

0.078 
0.15 
0.079 
0.23 

16.17 
17.18 
17 
17,18 

Narcissus "King Alfred" Galanthamine (26) 
Lycorine (11) tm am m» ̂  

14 
14 

Narcissus "Texas" Galanthamine (26) ---- 14 

Narcissus "Deanna Durbin" Lycorine (11) 19 

3-C^^-Tyrosine Sprekelia formossisima Haemanthamine (58) 
Tazettine (12) 
Haemanthidine (57) 

0.16 
0.20 

20 
20 
20 

Haemanthus natalensis 

Nerine bowdenii 

Haemanthamine (58) 
Haemanthidine (57) 
6-Hydroxycrinamine (61) 
Lycorine (11) 
Belladine (54b) 

0.97 
0.19 
1.18 
0.11 
0.82 

21 
21 
21 
22 
22 

2-C^^-Phenylalanine Narcissus incomparibilis Lycorine (11) 0.00 23 

3-C^^-Phenylalanine Narcissus incomparibilis Lycorine (11) 0.18 23 

Nerine bowdenii Lycorine (11) 
Belladine (54b) 

0.095 
0.42 

22 
22 

Narcissus "Deanna Durbin" Lycorine (11) 
Pluvine (62) 
Galanthine (63) 
Haemanthamine (58) 
Narcissidine (64) 

- - - -

19 
19 
19 
19 
19 

NS 
00 

,• / 
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29 

Likewise, phenylalanine (59b) is shown to be incorporated only into the 

aromatic Cg-C^ unit and is not incorporated into the hydroaromatic 

C^-Cg unit. 

Hg-CH-COgH 

NHg 

CH3O 

59a)R = OH 

b) R = H 

06O 

OH 
CHoO 

62  
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OCH 

HO HO 

OCH 

CH 

63 • 64 

In the biogenetic scheme proposed by Stegllch^, the Amaryllidaceae 

alkaloids would contain radioactive labels in the hydroaromatic ring of 

the Cg-C2 unit, if the 3,4-dioxyphenylacetaldehyde (16) or intermediate 

(18) was derived from 3-C^^-phenylalanine (59b) or 3-C^^-tyrosine (59a), 

14 14 Since no biosynthetic experiments using 3-C -phenylalanine or 3-C -
* 

tyrosine have shown incorporation of carbon-14 into the hydroaromatic 

ring of Amaryllidaceae alkaloids, Steglich's hypothesis^ must be discar­

ded. 

The hydroaromatic ring of the ketamines (29 and 30) which serve as 

the precursors of the C^-Cg unit in Amaryllidaceae alkaloids (Figure 8 

and 9) is derived from shikimic acid (28), and the two-carbon unit of 

29 and 30 is derived from pyruvic acid (Figure 7) by the biogenetic 

scheme proposed by Wenkert^®. The shikimic acid also serves as a pre­

cursor of the Cg-C^ unit. At present this scheme must be considered as 

an alternate biosynthetic pathway of the Amaryllidaceae alkaloids. 
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There have been no investigations using labelled shikimic acid, pyruvic 

acid or the ketamines (29 and 30) to determine the validity of the Wen-

10 kert hypothesis . Evidence proving or disproving this biosynthetic 

pathway will be difficult to obtain, for shikimic acid and pyruvate are 

known precursors of phenylalanine (59b) and tyrosine (59a) in micro-

24-29 organisms 

A series of investigations, summarized in Table 2, have shown norbel-

ladine (54a) to be incorporated intact into the Amaryllidaceae alkaloids. 

33 Further studies by Wildman and Battersby have shown negligible incorpor­

ation of I'-C^^-bisdeoxynorbelladine (65) and of I'-C^^-hydroxynorbella-

dine (66) into haemanthamine (58), or any alkaloid of the Amaryllidaceae 

family (Table 3). These data suggest that, prior to phenyl-phenyl oxida­

tive coupling, the aromatic ring in the Gg-C^ unit must be di-oxygenated 

and the aromatic ring in the Cg-Cg unit of the phenolic precursor must 

be mono-oxygenated. The data also suggest that further oxygenation of 

the hydroaromatic ring of the Cg-C2 unit in the Amaryllidaceae alkaloids 

HO. 

65 66 
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Table 2. Incorporation of norbelladine into Amaryllidaceae alkaloids 

Precursor Plant 

1-C^^-Norbelladine Narcissus "Twink" 

Galanthus elwese 

Narcissus "King Alfred" 

l,l'-C^^-Norbelladine Nerine bowdenii 

Alkaloid % inc. Réf. 

Lycorine (11) 0 .24 30 
Norplurine (60) 0 .74 30 
Haemanthamine (58) 0 .15 16 

Galanthamine (26) 0 .053 31 

Galanthamine (26) — — — 31 
Galanthine (63) - — — 31 
Haemanthamine (58) 31 

Lycorine (11) 0 .07 32 
Crinamine (67) 0 .0009 32 
Belladine (54b) 2 .64 32 

67 
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Table 3. Incorporation of norbelladine derivatives into Amaryllidaceae alkaloids 

Precursor Plant Alkaloid % inc. Ref. 

I'-C^^-Bisdeoxynorbelladine Narcissus "Twink" Tazettine 0.00 33 

1'-C^^-Hydroxynorbelladine 
Haemanthamine 0.00 33 

1'-C^^-Hydroxynorbelladine Narcissus "Twink" Tazettine 
Haemanthamine 
Lycorine 0.00068 

33 
33 
33 

N-C^^-Methyl norbelladine 
Norpluvine 0.0017 33 

N-C^^-Methyl norbelladine Narcissus "King Alfred" Galanthamine 0.18 31,34 
Galanthine 0.00 , 

0.00 
31,34 

Haemanthamine 
0.00 , 
0.00 31,34 

0-Methyl-N-C^^-Methyl Narcissus "King Alfred" Galanthamine 0.14 31,34 
norbelladine Galanthine 0.00 31,34 

0-C^^-Methyl-N-C^^-Methyl 

Haemanthamine 0.00 31,34 
0-C^^-Methyl-N-C^^-Methyl Narcissus "King Alfred" Galanthamine 0.14 34,35 

norbelladine Galanthine 0.00 34,35 

O-C^^-Methyl-N-C^^-Methyl 
Haemanthamine 0.00 34,35 

O-C^^-Methyl-N-C^^-Methyl Narcissus "King Alfred" Galanthamine 0.018 35 
1-C^^-norbelladine Galanthine 

Haemanthamine 
0.00 
0.00 

35 
35 

0-C^^-Methylnorbelladine Narcissus "King Alfred" Galanthamine 
Galanthine 

0.00 34,36 
34,36 

0-C^^-Methyl-l-C^^-
Haemanthamine 0.036 34,36 

0-C^^-Methyl-l-C^^- Narcissus "King Alfred" Galanthamine 0.00 34,36 
norbelladine Galanthine 

Haemanthamine 1.00 
34,36 
34,36 
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must occur after oxidative coupling. The feeding of tritiated norplu-

vine (60) to "Deanna Durbin" and isolation of lycorine (11) containing 

17 10.5% of the activity indicates that the oxygenation of the C^-Cg unit 

may occur after oxidative coupling of the phenolic precursor, A probable 

biosynthetic sequence (Figure 16) was considered to be; norpluvine 

(60) > caranine (55) > lycorine (11). 

il 

60 55 

11 

Figure 16. Biosynthetic sequence: norpluvine to lycorine 
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A series of feeding experiments using labelled methyl derivatives 

of norbelladine (54a) has been accomplished (Table 3), N-Methyl norbel-

ladine (68) and 0,N-dimethyl norbelladine (56) have been shown to be in­

corporated into galanthamine (26), but they were not incorporated into 

galanthine (63) and haemanthamine (58). However, 0-methyl norbelladine 

(69) has been shown to be incorporated into haemanthamine but not into 

galanthamine. The data suggest a definite order of methylation for 

galanthamine (Figure 17): norbelladine (54a) > N-methyl norbelladine 

(68) > 0,N-dimethyl norbelladine (56) > galanthamine (26), These 

OH 
HO 

HO 

H 

OH 
HO 

HO 
•> 

CH 

54a 68 

OH 
HO 

CH 

56 26 

Figure 17. Order of methylation for galanthamine 
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data also suggest a definite order of methylation for haemanthamine 

(Figure 18) : norbelladine (54a) > 0-methyl norbelladine (69) > 

haemanthamine (58). 

54 a 69 

OH 

J 

58 

Figure 18. Order of methylation for haemanthamine 

37 
There have been two pathways proposed (Figures 19 and 20) for 

the incorporation of phenylalanine (59b) into the C^-C^ unit of the 

Amaryllidaceae alkaloids ; (1) phenylalanine (59b) — 

(70) » benzaldehyde (71) > _£-hydroxybenzaldehyde (72) 

> phenylserine 

—> 



www.manaraa.com

37 

norbelladine (54a) and (2) phenyla-

—>£-hydroxycinnamic acid 

3,4-di-hydroxybenzaldehyde (73) — 

lanine (59b) > trans-cinnamic acid (74) 

(75) > 3,4-dihydroxycinnamic acid (76) or £-hydroxybenzaldehyde 

(72) > 3,4-dihydroxybenzaldehyde (73) ^norbelladine (54a). 

CH2~ CH—COgH 

NH2 

59b 

ÇH-ÇH-COgH 
OH NHg 

70 

CHO 

' J j  -
71 72 

CHO 

73 

Figure 19, Incorporation of phenylalanine into Cg-C^ unit of the Amaryl-
lidaceae alkaloids via phenylserine 
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^xCs^CHg-CH-COgH 

NHg 

59b 74 

75 

76 

' . o X j  

72 

hov^/'N:;^cho 

1 J 

73 54a 

Figure 20. Incorporation of phenylalanine into C^-C^ unit of the 
Amaryllidaceae alkaloids via trans-cinnamic acid 
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Table 4. Incorporation of other possible Cg-Cj^ unit precursors into Amaryllidaceae alkaloids 

Precursor Plant Alkaloid % inc. Ref. 

3-C^^-Phenylserine Narcissus pseudonarcissus Haemanthamine 37,38 

7-G-Benza1dehyde 

Narcissus incomparabilis Lycorine 0 .00 38 

7-G-Benza1dehyde Narcissus pseudonarcissus Haemanthamine 0 .00 37 
Spekelia formossisima Tazettine 0 .005 33 

£-Hydroxy-7-C^^-benzal- Narcissus pseudonarcissus Haemanthamine 0 o
 
o
 

37,38 
dehyde Lycorine - •  -  -  - 37,38 

trans-B-C^^-cinnamic \ Narcissus pseudonarcissus Haemanthamine 0 .35 37-39 Narcissus pseudonarcissus 
Lycorine -• -  -  —  37,39 

Nerine bowdenii Lycorine 0 .02 33 

£-Hydroxy-3-C^^-cinnamic 

Belladine - •  -  — —  33 

£-Hydroxy-3-C^^-cinnamic Narcissus pseudonarcissus Haemanthamine 0 .16 37-39 
acid Lycorine -• -  —  —  37-39 

3,4-Dihydroxy-3-C^^- Narcissus pseudonarcissus Haemanthamine -  —  - 23,38,40 
cinnamic acid Lycorine -• 23,38,40 

3,4-Dihydroxy-7-C^^-

Narcissus incomparabilis Lycorine 0 .006 38 

3,4-Dihydroxy-7-C^^- Narcissus pseudonarcissus Haemanthamine • -  -  —  40,41 
benzaldehyde Lycorine . 40,41 
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Negligible incorporation of phenylserine, benzaldehyde, and £-

hydroxybenzaldehyde into haemanthamine (58) and tazettine (12) have been 

reported (Table 4). However, trans-cinnamic acid, £-hydroxycinnamic 

acid, 3,4-dihydroxycinnamic acid, and 3,4-d.ihydroxybenzaldehyde have 

been shown to be incorporated in good yield into various Amaxyllidaceae 

alkaloids (Table 4). These data suggest that phenylalanine is incor­

porated into the Cg-C^ unit of the Amaryllidaceae alkaloids by the 

phenylalanine-trans-cinnamic acid pathway (Figure 20) and not by the 

phenylalanine-phenylserine pathway (Figure 19). 

Studies of the incorporation of tyrosine (Table 1) and tyramine 

(77)^^ into the Amaryllidaceae alkaloids (Table 1) suggest that tyrosine 

is incorporated into the alkaloids (Figure 21) by the following bio-

synthetic pathway: tyrosine (63a) > tyramine (77) > norbelladine 

(54a). 

The combined biosynthetic pathway for incorporation of phenylalanine 

(59b) and tyrosine (59a) into norbelladine (54a) is given in Figure 22. 

Other investigations have proved that the methylenedioxy group of 

haemanthamine (58) originates from the 0-methyl group of 0-methyl nor-
OA 

belladine (69) ' 
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H- COg H 

HO' 

NHc 

5.9a 

54 a 

77 

Figure 21, Incorporation of tyrosine into the 0,-0» unit of the 
Amaryllldaceae alkaloids 
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C H - C H - C O 2 H 

NHr 

59b 

:H2—CH—CO2H 

NH2 

59a 

HO 

74 

75 

^%'^^^,y%CH2""CH2NH2 

77 

54a 

HO'^'^x:^ „XJ 

76 73 

Figure 22, Incorporation of phenylalanine and tyrosine into norbel-
ladine 
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RESULTS AND DISCUSSION 

Ambelline 

The structure of ambelline (78), a major alkaloid of Amaryllis 

belladonna^^ and Nerine bowdenii^^ was determined by Wildman in 1963 

by degradative and spectroscopic methods^®. A similar degradation was 

used in the present studies with radioactive material. 

CH^O 

OCH. 

All feeding experiments (Table 5) used Nerine bowdenii as the plant 

host and the ambelline was isolated by standard procedures^^. 

Table 5. Feeding experiments with Nerine bowdenii as plant host 

Feeding experiment 
Total act. Wgt. amb. Amb. act, 
used isol. (dpm/mM) % inc. 

3-C -Phenylalanine 
3-C^^-Tyrosine 
2-C^^-Tyrosine 
1,1'-C^^-Norbelladine 
Sodium C^^-formate 

0.3 mc. 
0.1 mc. 

0.355 mc. 
0.316 mc. 

70 mg. 
89 mg. 
77.5 mg. 
118 mg. 
34 mg. 

4.40 X 10^ 
1.124 X 104 
4.465 X 104 
7.73 X 103^ 
1.605 X 104 

2.33 X 10 
1.50 X 10 

-3 
2 

3.87 X 10-3 
2.64 X 10-3 
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Degradation of Ambelline 

The radioactive precursors fed to Nerine bowdenii cited in Table 5 

could yield ambelline (78) labelled in the methoxyl and/or the methylene-

dioxy groups, as well as at the Cg, and positions. To isolate 

and identify each of these carbon atoms in ambelline as obtained from 

the various feeding experiments, degradation procedures were developed 

which permitted the determination of the amount of radioactivity at each 

position. 

The total activity present in the two methoxyl {groups of ambelline 
. 

was determined by the Zeisel method (Figure 23). The radioactivity of 

the methylenedioxy group was determined by acid hydrolysis to formalde­

hyde^^, (Figure 24), vAiich was isolated as the dime done adduct (79). 

Figure 23. Methoxyl determination 
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(J 
CH,0 

H2SQ4 
HCHO" 

dflTiedoMe 

H H 

Figure 24. Methylenedioxy detemination 

Feedings of radioactive phenylalanine and tyrosine labelled in the 

aliphatic portions of these amino acids should, by biosynthetic predic­

tion, lead to radioactive ambelline, which might be labelled at the Cg, 

and/or 0^2 positions. It was imperative that a degradation scheme 

be devised which could isolate each of these carbon atoms specifically 

and in high yield. The carbon atoms Cg, and in ambelline are 

designated by a dagger, dot and asterisk in formula 78. 

To determine the amount of radioactivity at the Cg, and 

positions, ambelline was converted (Figure 25) to N-(2-methoxy-6-
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OCH, 

CH3O 

OCH: 

CH30 

CH30 

..-^oT 

Figure 25. Degradation of ambelline 

H CI 

N—CHg—COpH 

80a)R = OCH3 

b)R = H 

phenylpiperonyl), sarcosine hydrochloride (80a), This transformation 

involves the loss of the methoxyl group at the Cg position of ambelline. 

There should be no loss of activity in 80a relative to ambelline which 

was obtained from a 3-C^^-phenylalanine, 2-C^^- or 3-C^^-tyrosine feeding 

experiment, due to the removal of the methoxyl group. Oxidation of 
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ambelllne with chromium trioxide in pyridine gave dxoambelline (81), 

•which was quatemized with methyl iodide to give oxoambelline methio-

dide (82). Treatment of 84a with sodium hydroxide gave oxoambelline 

methine which was isolated as the hydrochloride (80a). From the hypothe­

tical labelling pattern assigned to 78, corresponding activity is shown 

in 80a, as would be expected. 

No single degradative procedure allowed the simultaneous determina­

tion of the radioactivity in the two carbon atoms of the acetic acid 

group of N-(2-methoxy-6-phenylpiperonyl) sarcosine hydrochloride. Al-

though the Kolbe electrolysis was successful for the determination of 

radioactivity in the methylene and carboxyl groups of 80bthe electrol­

ysis proved to be unsatisfactory for the determination for the non-

benzlic methylene carbon of 80a. If radioactivity was expected in the 

carboxylic acid group of 80a, it was most expedient to degrade by 

procedure A (Figure 26). This procedure could also be used to determine 

the activity present at the benzylic position of 80a. However, if the 

activity was present in the methylene group indicated by the Asterisk, 

satisfactory results could be obtained only by use of a second procedure 

(B), (Figure 26). 

In procedure A, hydrogenolysis of N-(2-methoxy-6-phenylpiperonyl) 

sarcosine hydrochloride (80a) gave 3-methoxy-2-methyl-4,5-methylene-

dioxybiphenyl (83) and sarcosine (84), which was isolated as N-tosyl-

sarcosine (85) by reaction with £-toluene sulfonyl chloride. Kolbe 

electrolytic oxidation of 85 gave N-methyl-£-toluenesulfonamide (86), 

carbon dioxide and formaldehyde, the latter being isolated as the 
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N—ÇH2—COgH 
t CH§ 

CH3O 
OCH 

+ 

CO, 

CH3-K-CH2-CO2H 

84 -

CH3-N-CH2-CO2H 

g5 : 

electrolysis 

V 9 
CH3-N-S 

86 
+ 

COp + H, 

H H 

Figure 26. Degradation of N-(2-methoxy-6-phenylpiperonyl) sarcosine 
hydrochloride by procedures A and B 
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dimedone adduct (79). The quantities of radioactive ambelline degraded 

did not .permit the isolation of 86. If the N-tosylsarcosine was labelled 

in the carboxylate carbon, the carbon dioxide liberated should contain 

all of the radioactivity. This result was supported by the model de­

gradation of N-tosyl-l-C^^-sarcosine (Table 6) synthesized from 1-C^^-

glycine (87). If 85 was labelled in the methylene group, the carbon 

Table 6. Relative activities* of N-tosylsarcosine and degradation 
products 

Compound 

Oxidation of 
N-tosyl-l-C^^-
sarcosine in 
ethanol 

Oxidation of 
N-tosyl-2-C *-
sarcosine in 
ethanol 

Oxidation of 
N-tosyl-2-C^^-
sarcosine in 

water 

N-Tosylsarcosine 1.00 1.00 1.00 

Carbon dioxide 0.88 0.00 0.00. 

Formaldehyde dime-
done adduct 0.00 0.34 0.60 

^Relative activity is the specific radioactivity in dpm/mM of a 
compound compared to the specific radioactivity of the parent compound, 
which is given the value of 1.00 for convenience. 

H2N—CH2—COqH 

87 
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dioxide contained no radioactivity and the formaldehyde isolated as the 

dimedone adduct (79) would be labelled. However, in actual experiments 

the formaldehyde dimedone adduct had less than 70% of the expected radio­

activity based on the level of the N-tosylsarcosine. This low relative 

activity for the formaldehyde dimedone adduct has been attributed to the 

formation of side products in the electrolytic oxidation of the N-tosyl-

16 sarcosine . This assumption was supported by electrolytic degration. 

of N-tosyl2-C^^-sarcosine (Table 6) prepared from 2-C^^-glycine, where 

model experiments showed that only 60% of the radioactivity of the 

methylene carbon was recovered as the dimedone adduct. These results 

necessitated the development of a second procedure (B) which permitted 

the determination of the activity at the position of ambelline. The 

lead tetraacetate oxidation of amino acids appeared to be a promising 

alternative. 

Wieland and Berge1^® first reported the catalytic oxidative decar­

boxylation of amino acids with oxygen to give carbon dioxide, an alde-

51 3 
hyde and ammonia. Spenser has shown that oxidation of of-y^-H^-valine 

3 
(88) and oC-/@ -H2-phenylalanine (59b) with sodium hypochlorite, hydrogen 

peroxide, chloramine-T, ninhydrin and alloxan takes place without loss • 

3 3 
of tritium to give l,2-H2-isobutraldehyde (89) and 1,2-H^-phenylacetal-

dehyde (90), respectively. Spenser proposed that the reaction (Figure 27) 

involved a carbinolamine intermediate (91) which rapidly decomposes to an 

aldehyde and ammonia. Support for a carbinolamine intermediate was 

found in the oxidation of oC-N-diphenylglycine (92) with potassium 
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CH^—CH—ÇH—COpH CHo—CH—CHO 
«5 1 ^ I 

H3C NH/ CH. 

88 89 90 

-> RCHO 

91 . 

Figure 27. Mechanism of oxidative decarboxylation of amino acids 

ferricyanide (Figure 28) to give the isolable Schiff base, benzalaniline 

(93). Presumably the carbinolamine (94) was formed and underwent rapid 

elimination. 

In procedure B, lead tetraacetate oxidation of N-(2-methoxy-6-

phenylpiperonyl) sarcosine hydrochloride (80a), labelled at the posi­

tion indicated by the asterisk gave inactive carbon dioxide. The radio­

activity of the formaldehyde which was isolated as the dimedone adduct 

(79) was less than the predicted value. This result suggested that part 

of the formaldehyde collected as the dimedone adduct was a decomposition 

HO" 4- R-CH-COp-

NHo 

-CO2 
R—CHOH 

I 
NHo 
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''ÇH-CO2H 

NH 
HO^ 

-H^y-COg' 

92 

Cr 
ÇHOH 

NH 

94 

N 

.93 

Figure 28. Mechanism of Schiff base formation in oxidative decarboxyla­
tion of amino acids 

product of the lead tetraacetate-glacial acetic acid solution. This 

interpretation was found to be correct. Heating the lead tetraacetate-

glacial acetic acid solution in the absence of N-(2-methoxy-6-phenyl-

piperonyl)'sarcosine hydrochloride afforded formaldehyde which was isola­

ted as the dimedone adduct. In a second experiment lead tetraacetate 

solution was heated in the absence of 80a and the evolved gases were 

collected in water. The water solution was shown to contain formalde-

52 
hyde by the method of Bricker and Vail . 

A thorough investigation of the amount of formaldehyde produced by 

10.0 ml. of 0.67% lead tetraacetate-glacial acetic acid solution at 
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various reaction times was undertaken (Table 7). The amount of formal­

dehyde obtained, within experimental error, was directly proportional 

to the length of time of heating and the age of the solution. 

Table 7. Formaldehyde produced by heating 0.67% lead tetraacetate-
glacial acetic acid solution 

Trial Length of time Wgt. of dime-
no. Age of solution solution heated done adduct 

1 16 hrs. 2 hrs. 30 min. — — — 

16 hrs. 3 hrs. 00 min. 0.26 mg. 
16 hrs. 3 hrs. 45 min. 0,16 mg. 

2 2 days 14 hrs. 10 min. 2 hrs. 30 min. 0,20 mg. 
2 days 14 hrs. 10 min. 3 hrs. 15 min. 0,16 mg. 
2 days 14 hrs. 10 min. 4 hrs. 05 min. , 0,29 mg. 

3 6" days 15 hrs. 40 min. 2 hrs. 30 min. 0,27 mg. 
6 days 15 hrs. 40 min. 3 hrs. 20 min. 0,30 mg. 
6 days 15 hrs. 40 min. 3 hrs. 50 min. 0,33 mg. 

4 10 days 16 hrs . 30 min. 2 hrs. 40 min. 0,31 mg. 
10 days 16 hrs . 30 min. 3 hrs. 00 min. 0,53 mg. 
10 days 16 hrs . 30 min. 4 hrs. 05 min. 0,59 mg. 

5 24 days 4 hrs. 20 min. 2 hrs. 35 min. 0,75 mg. 
24 days 4 hrs. 20 min. 3 hrs. 15 min. 1,18 mg. 
24 days 4 hrs. 20 min. 3 hrs. 50 min. 1.28 mg. 

6 30 days 19 hrs . 30 min. 2 hrs. 30 min. 2,60 mg. 
30 days 19 hrs . 30 min. 3 hrs. 10 min. 5,55 mg. 
30 days 19 hrs . 30 min. 3 hrs. 55 min. 4,99 mg. 
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A corrected specific activity for the radioactive formaldehyde 

dimedone adduct (A^) could be calculated by the following equation: 

4 

"l 

where A^ and Wj^ are the specific radioactivity and weight, respectively, 

of the diluted dimedone adduct, and ̂ 2 is the amount of formaldehyde 

dimedone adduct found to be produced in a blank experiment using 10.0 ml. 

of 0.67% lead tetraacetate-glacial acetic acid solution. 

Previous biosynthetic studies have shown phenylalanine (59b) to be 

a precursor of the Cg-C^ unit of the Amaryllidaceae alkaloids (Table 1) 

having two oxygen substituents on the aromatic ring. If 3-C^^-ph.enyla-

lanine is a precursor of the C^-C^ unit of ambelline (78) which is tri-

oxygenated in the aromatic ring, the radioactive label would be expected 

to occur at the benzylic (Cg) position, Ambelline isolated from the 

3-C^^-phenylalanine feeding experiment (Table 5) was degraded by 

procedure A (Figure 26) and shown to contain all its radioactivity at 

the Cg position within experimental error (Table 8). 

The low specific activity (4,400 dpm/mM) of the ambelline required 

complete radiochemical purity. The ambelline purity was checked by con­

version to the hydrochloride which had the same specific activity as 

the original ambelline. 
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HO 

Table 8. Degradation of ambelllne isolated from the 3-C^^-phenylalanine 
feeding experiment 

Compound Yield 
Amount used 
next rctn. 

Rel. 
act. 

Ambelline 650 mg. 1.00 

Ambelline hydrochloride -  — - -  -  - 1.04 

Oxoambelline 229 mg. 229 mg. — — - — 

Oxoambelline methiodide 220 mg. 200 mg. 1.05 

N-(2-methoxy-6-phenylpiperonyl) 
sarcosine hydrochloride 

164 mg. 164 mg. ----

N-Tosylsarcosine 38 mg. 0.04 

3-Methoxy-2-methyl-4,5-
methylenedioxybiphenyl 

61 mg. 0.90 

No further degradation was attempted to isolate the label in the 

methyl group of 3-methoxy-2-methyl-4,5-methylenedloxybiphenyl (83) be 

cause any migration of the Cg atom in phenylalanine into the aromatic 

ring would be highly improbable. 
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These data prove that phenylalanine serves as a precursor of the 

tri-oxygenated aromatic C^-C^ unit of ambelline. 

Ambelline Isolated From the 3-C^^-Tyrosine Feeding Experiment 

Previous biosynthetic studies have shown tyrosine (59a) to be a pre­

cursor of the hydroaromatic Cg-Cg unit of the Amaryllidaceae alkaloids 

(Table 1). If 3-C^^-tyrosine is a precursor of the 0^-62 unit of ambel­

line (78) the radioactive label would be expected to occur at the 

position. The ambelline isolated from the 3-C^^-tyrosine feeding ex­

periment (Table 5) was degraded by procedure A (Figure 26) and shown 

to contain all of its radioactivity at position (Table 9). 

Table 9. Degradation of ambelline isolated from the 3-C^^-tyrosine 
feeding experiment, procedure A 

Amount used Rel. 
Compound Yield next rctn. act. 

Ambelline 650 mg. 1.00 

Oxoambelline 450 mg. 450 mg. -

Oxoambelline methiodide 350 mg. 350 mg. 0.99 

N-(2-Methoxy-6-phenylpiperonyl) 231 mg. 200 mg. 1,00 
sarcosine hydrochloride 

3-Methoxy-2-methyl-4,5- 82 mg. 0.00 
methylenedioxybipheny1 

N-Tosylsarcosine 99 mg. 19.75 mg. 1.02 

Carbon dioxide ---- 0.95 

Formaldehyde dimedone adduct 5 mg. 0.00 
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Ambelline Isolated From a 2-C^^-Tyrosine Feeding Experiment 

Since feeding 3-C^^-tyrosine to Nerine bowdenii was shown to give 

radioactive ambelline labelled at it would be expected that 2-C^^-

tyrosine would give rise to ambelline labelled at This was found 

to be the case. 

The ambelline obtained from the 2-C^^-tyrosine feeding experiment 

was degraded twice by procedure A (Table 10). In each degradation the 

N-tosylsarcosine gave non-radioactive carbon dioxide. The formaldehyde 

dimedone adduct had a relative specific activity considerably less than 

acceptable (Table 10, trial 1). Two degradations of ambelline by 

procedure B (Table 11) gave formaldehyde dimedone adduct with relative 

specific activities of 0,62 and 0,72 without corrections for impurities, 

A third degradation, corrected for the extraneous formaldehyde produced 

according to the method prescribed in procedure B, provided the rela­

tive activity (0.97) for the formaldehyde dimedone adduct (Table l2), 

Ambelline Isolated From the l,l'-C^^-Norbelladine 

Feeding Experiment 

Previous biosynthetic studies (Table 2) have shown norbelladine 

(54a) to be incorporated intact into the lycorine, galanthamine, crinine, 

belladine and tazettine types of Amaryllidaceae alkaloids. The norbel­

ladine used in this feeding experiment had 78.2% of its total radio­

activity at the position and 21.8% of its total radioactivity at the 

position. If the norbelladine was incorporated intact into 
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Table 10. Degradation of ambelline isolated from the 2-C^^-tyrosine feeding experiment, 
procedure A 

Trial 1 Trial 2 

Compound Amount used Rel. Amount used Rel, 
Yield next rxtn. act. Yield next rxtn. act. 

Ambelline 824 mg. 1.00 1.3 g. 1.00 

Oxoambelline 692 mg. 692 mg. 990 mg. 990 mg. 

Oxoambelline methiodide 350 mg. 350 mg. 1.04 837 mg. 837 mg. 

N-(2-Methoxy-6-phenylpiperonyl)\ 185 mig. 180 mg. 0.94 435 mg. 200 mg. 0.98 
sarcosine hydrochloride 

3-Methoxy-2-methyl-4,5- 139 mg. 0.00 32 mg. 0,00 
methylenedioxybiphenyl 

N-Tosylsarcosine 41 mg. 16 mg. 1.08 26 mg. 1.01 

Carbon dioxide 0.00 

Formaldehyde dimedone adduct 3 mg. 0.46 
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Table 11. Degradation of ambelline isolated from the 2-C^^-tyrosine feeding experiment. 
Procedure B 

Trial 1 Trial 2 

Compound 
Yield 

Amount used Rel. 
next rxtn. act. Yield 

Amount used 
next rxtn. 

Rel. 
act. 

Ambelline 750 mg. 1.00 750 
A 
mg. 1.00 

Oxoambelline 472 mg. 472 mg. ---- 472 mg. 472 mg. — — — — 

Oxoambelline methiodide 466 mg. 466 mg. ---- .466 mg. 466 mg. — - — -

N-(2-methoxy-6-phenylpiperonyl) 
sarcosine hydrochloride 

250 mg. 14 mg. 1.06 250 mg. 14 mg. 1.06 

Carbon dioxide 0.00 — — — — 0.00 

Formaldehyde dimedone adduct 6 mg. 0.72 6 mg. 0.62 

Table 12. Corrected values of the 
tained by procedure B 

# 

relative activities of the formaldehyde dimedone adduct ob-

Source of rad. amb. 

Amount of 
HCHO dime-
dbne add. 

Amount of 
HCHO from 

Pb(OAc)^ ox. 
Rel. 
act. 

Cor. rel 
act. 

2-C^^-Tyrosine feeding 
experiment 

5.55 mg. 1.81 mg. 0.66 0.97 

l,l'-C^^-Norbelladine feeding 
experiment 

4.64 mg. 1.45 mg. 0.53 0.78 
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ambelline (78) as predicted by the Barton-Cohen hypothesis, the 0^2 

position should have 78.2% and position Cg should have 21.8% of the 

total radioactivity of the ambelline (Figure 29). 

CH3O 

Figure 29. Incorporation of norbelladine into ambelline 

The relative activities at the 0^2 and Cg positions were determined 

by degradation of ambelline by procedures A (Table 13) and B (Table 14). 

Degradation of the ambelline by procedure A gave 3-methoxy-2-methyl-4,5-

methylenedioxybiphenyl having 20% of the total activity and N-tosyl-2-C^^-

sarcosine containing 71% of the total activity, which is in good 
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Table 13. Degradation of ambelline isolated from the 1,1'-C^^-norbel-
ladine feeding experiment, procedure A 

Amount used Re 1. 
Compound Yield next rctn. act. 

Ambelline 836 mg. 1.00 

Oxoambelline 573 mg. 573 mg. 

Oxoambelline methiodide 355 mg. 350 mg. 1.00 

N-(2-Methyox-6-phenylpiperonyl) 158 mg. 150 mg. 0.93 
sarcosine hydrochloride 

3-Methoxy-2-methy-4,5- 16 mg. 0.20 
methylenedioxybiphenyl 

N-Tosylsarcosine 26 mg. 0.71 

Table 14. Degradation of ambelline isolated from the l,l'-C^^-norbel-
ladine feeding experiment, procedure B 

Amount used Rel. 
Compound Yield next rctn. act. 

Ambelline . 1,067 g. 1,00 

Oxoambelline 660 mg. 660 mg. 

Oxoambelline methiodide 700 mg, 700 mg. 

N-(2-Metoxy-6-phenylpiperonyl) 14 mg. 1.00 
sarcosine hydrochloride 

Fomaldehyde dimedone adduct 1.36 mg. 0,53 

Carbon dioxide 
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agreement with the theory. The N-tosylsarcosine obtained from degrada­

tion of ambelline by procedure A was not subjected to electrolytic oxida­

tion. Lead tetraacetate oxidation of N-(2-methoxy-6-phenylpiperonyl) 

sarcosine hydrochloride fTable 14) gave formaldehyde dimedone adduct 

having a relative specific activity of 0.53, which could be corrected 

to 0.78 (Table 12), These data prove that norbelladine is incorporated 

intact into ambelline. -

Ambelline Isolated From the Sodium C^^-Formate 

Feeding Experiment to Nerine bowdenii 

There is ample evidence that formate serves as a precursor of one-

carbon units such as N-methyl, methoxyl and methylenedioxy groups in 

natural products^^ Thus the ambelline (78) isolated from sodium 

lA C^-formate feeding experiments would be expected to be labelled primar­

ily in the methoxyl and methylenedioxy groups. 

As a routine experiment, sodium C^^-formate was fed to Nerine 

bowdenii at the same time the feeding experiments with 3-C^^-phenyl-

alanine, 3-C^^-tyrosine and 1,1'-C^^-norbelladine were carried out. 

The degradation of belladine (54b) isolated from the formate feeding 

experiment showed extremely peculiar isotopic incorporation. Radio­

activity was found to the extent of 27% in the methoxyl and N-methyl 

groups. However, 73% remained unaccounted for and must be present in 

the Cg-Cj^ and Cg-Cg units. Degradation of the belladine showed that 

all remaining radioactivity unaccounted for was at the benzylic position 

(H. Ishii, Chemistry Department, Iowa State University, Ames, Iowa, 
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Private Communication, 1965). Although belladins was the major alkaloid 

isolated from Nerine bowdenii in the sodium C^^-formate feeding experi­

ment, it was possible to obtain ambelline at a very low level of activi-

4 ty (1,605 X 10 dpm/mM). Because of the unusual results obtained in 

the degradation of belladine, it was deemed worthwhile to examine, with­

in the limits of experimental validity, the pattern of incorporation 

present in ambelline. The pattern of isotopic incorporation in ambelline 

was in good agreement with that found for belladine. 

One-carbon units in ambelline would consist of the methylenedioxy 

at and methoxyls at the Cg and positions. Specific degrada­

tions for these groups showed that 57% of the total radioactivity of the 

ambelline was present in these one-carbon groups (Table 15). The methy­

lenedioxy group contained approximately 3% of the radioactivity, while 

a Zeisel determination showed that the Cg and Cy methoxyl groups con­

tained approximately 54% of the total radioactivity. Since Hofmann de­

gradation of ambelline to 80a occurred with loss of 47% of the total 

radioactivity, the methoxyl group contains 47% of the total one-

carbon radioactivity and, by difference, Cy contains about 7%. 

Table 15. Per cent of the total activity of the ambelline in the 
methylenedioxy, the C and the C methoxyl groups 

3 7 

One-carbon units % act. of amb. 

Methylenedioxy group 3. 
Cj Methoxyl group 47. 
Cy Methoxyl group 7. 

Total of three groups 57. 
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Since degradation of the ambelline by procedure B (Table 16) 

showed no radioactivity at either the or positions, the remain­

ing radioactivity (43%) in the ambelline must be in the Cg-C^ unit or in 

the hydroaromatic ring of the Cg-Cg unit. Because of the results ob­

tained from belladine, it would be expected that a one-carbon unit would 

not be incorporated into the hydroaromatic ring of the 0^-02 unit or 

the aromatic portion of the Cg-Cj^ unit of ambelline, and it is presumed 

that the remaining activity is at the benzylic carbon. Unfortunately, 

insufficient material was available to carry the degradation further. 

Table 16. Degradation of ambelline isolated from Nerine bowdenii in the 
sodium C^^-formate feeding experiment, procedure B 

Compound Yield 
Amount used 
next rctn. 

Rel. 
act. 

Ambelline 160 mg. 1.00 

Oxoambelline 85 mg. 57 mg. 

Oxoambelline methiodide 27 mg. 25 mg. 1.01 

N- (2-Methoxy-6-phenylpiperonyl) 
sarcosine hydrochloride 

8 mg. 0.53 

Formaldehyde dimedone adduct 1.62 mg. 0.00 

Carbon dioxide - - - 0.00 

Radioactive formate could be incorporated into the Cg position of 

ambelline (78) and the C^, position of belladine (54b) by the following 

biosynthetic pathway (Figure 30). 

The formation of serine in Zea mays, wheat, barley, and tobacco 

from sodium formate and glycine (87) is well established^'^"^^. 
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HCO2H , + CH2~C02H 

NH, 

87 

ÇHj-CH-COgH-

OH |\JH2 

95 

HpC=C-COpH ;=± CH^-C-COoH—^CH^-C-CO^H-^ 
I ^ ^ II ^ 3 i| 2 

NHo NH O 

97 

CO2H 

H2C=C—CO2H 

OPO^Hp 
o' 

H2O3P 
"OH 

OH 

98 

HO 2 C \><^C H2~C-C O2H 

r O -CO2 

-H20 

OH 

CH2-C-CO2H :H2-CH-C02H 
NHc 

59b 

Figure 30, Proposed biosynthesis of phenylalanine 
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Zelinkovà and Sorm^^ proposed that the OC-carbon of glycine serves as a 

possible precursor of the position of serine (95). Sinhad and Cos-

sins^^ have shown that the position of serine does have varying 

amounts of radioactivity from 2-C^^-glycine feeding experiments. They 

proposed that serine could be formed by oxidation of the glycine to 

glyoxalate (96), which reacted with formate to give serine (Figure 31). 

H2N—CH2~CÔ2H > - OHC—CO2H -}-

87 96 

HCO2H * HO-CH2-ÇH-CO2H 

NH2 

95 

Figure 31. Formation of serine from glycine and formate 

The deamination of serine to pyruvic acid (97) has never been demonstra­

ted in botanical specimens, but has been shown to occur in the micro­

organisms Escherichia coli, Pseudomonos aeruginosa, Proteus ox^g, 

78"82 
Clostridium welchii and Neurosopora spp . The formation of phenyl­

alanine (59b) from 5-phosphoshikimic acid (98) and pyruvic acid has been 

suggested by studies of the metabolic pathways of the microorganisms 

Neurospora erassa, Escherichia coli and Aerobacter aerogenes^^"^^. 
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Further Studies on the Incorporation of One-Carbon 

Unit Precursors into the Amaryllidaceae Alkaloids 

14 
The unusual results obtained from the sodium C -formate feeding 

experiment with Nerine bowdenii as plant host were completely unexpected. 

Contrary to the previous biosynthetic experiments in vhich only members 

of the phenylalanine-cinnamic acid biosynthetic pathway (Figure 30) 

have been found to be incorporated into the Cg-Cj^ unit of the Amaryl­

lidaceae alkaloids, it now appeared that formate was an excellent pre­

cursor of the benzyl position of the C^-C^^ unit of these alkaloids. To 

14 
re-examine the pattern of incorporation of sodium C -formate in Amaryl­

lidaceae alkaloids, further feeding experiments were conducted (Table 17). 

Sprekelia formosissima was chosen as plant host on the basis of its 

83 availability and alkaloid content . Sprekelia formosissima contains 

Table 17. Feeding experiments with Sprekelia formosissima as plant host 

Wgt. taz. Total act. Taz. act. 
Feeding experiment iso. used (dpm/inM) % inc. 

Sodium C^^-formate 263 mg. 1.0 mc, 6.62 x 10^ 1,15 x 10 ̂  

3-cl4-Serine 220 mg. 0.5 mc. 2.33 x 10^ 8.16 x 10"^ 

3-C^^-Phenylalanine* 150 mg. 0.5 mc. 2.66 x 10^ 1.00 x 10"^ 

* The tazettine obtained from the 3-C^^-phenylalanine was not 
diluted with non-radioactive material prior to determining its activity. 
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minor amounts of haemanthamine and haemanthidine as well as th^ major 

alkaloid, tazettine. Each of these Amaryllidaceae alkaloids has a 

benzylic carbon in the Cg-C^ unit. The alkaloids were isolated from 

Sprekelia formosissima by standard procedures^^. Tazettine was obtained 

in sufficient yield for degradative purposes, but only trace amounts of 

haemanthamine and haemanthidine were obtained. A trace amount of lycora-

mine also was obtained. 

Since 3-C^^-serine is a one-carbon unit precursorand may be a 

possible biosynthetic intermediate in the formation of Amaryllidaceae 

alkaloids, it was also fed to selected bulbs of Sprekelia formosissima 

at the same time as the sodium C^^-formate. Because of previous biosyn­

thetic experiments with 3-C^^-phenylalanine, this substance was used as 

a reference; its incorporation into the Cg-C^ unit of tazettine is well 

established (Table 1). In Sprekelia formosissima the levels of incorpora­

tion of the radioactive tracers, sodium C^^-formate, 3-C^^-serine and 

3-C^^-phenylalanine, were comparable. 

Degradation of Tazettine 

On the basis of the early experiments with the incorporation of 

formate into belladine and ambelline, it would be expected that tazet­

tine (12) isolated from the sodium formate and 3-C^^-serine feeding 

experiments, would be labelled at the Cg position as well as in the 

fragments. 

The radioactivity present in the methoxyl group of tazettine 

was determined by the Zeisel miethod. The radioactivity of the 
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methylenedioxy group was determined by acid hydrolysis (Figure 32) to 

formaldehyde, which was isolated as the dimedone adduct (70). 

OCH 

N-CH 

OH # 
CH 

CH. 

12 79 

Figure 32. Methylenedioxy determination 

! 

In previous radioactive feeding experiments (Table 1) tazettine was 

92 
degraded by the procedure given in Figure 33. If the tazettine was 

labelled at the Cg position, the radioactivity would appear in the tazet­

tine methine (99) at the position indicated by the dagger. Basic hydroly­

sis of 99 gave 6-phenylpiperonyl alcohol (100) and dimethyIglycine, which 

was isolated as the hydrochloride (101). 

Activity at the position indicated by the dagger in tazettine methine 

would appear in the benzylic carbon atom of 100. To determine the amount 

of radioactivity at the benzylic position of 6-phenylpiperonyl alcohol, 

it may be oxidized to 6-phenylpiperonylic acid (102) with potassium 

permanganate (Figure 34) and then decarboxylated with copper chromite to 

give carbon dioxide and 3,4-methylenedioxybiphenyl (103). The carbon 
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OCH OCH, 

N—CHg 

CH^I 

12 

—CH2—N-CHg 

DNaOH / 
ÇH3 25HCI 

ÇH3 
N-CH3 

^"l)Ag?0 
OH 2)heat 

CHoOH 

+ .100 

C —C H2—CO2H 

CH3 CI" 

101 

Figure 33. Degradation of tazettine 

dioxide should contain all the activity at the Cg position, and 103 

would contain the radioactivity of the me thy le ne dio:^ group of tazettine. 

One of the N-methyl groups of the dimethylglycine hydrochloride is 

derived from the N-methyl group of tazettine, and the other arises from 
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100 

KMn04 _ CuCrgO^, 

102 

J + C02 
t 

103 

Figure 34. Oxidation-decarboxylation of 6-phenylpiperonyl alcohol 

non-radioactive methyl iodide. All radioactivity not in the carboxyl or 

methylene group of 101 must be in the N-methyl groups. To determine the 

activity of the N-methyl groups, the dimethylglycine hydrochloride was 

oxidized with lead tetraacetate to obtain the carboxyl group as carbon 

dioxide and the methylene group as formaldehyde dimedone adduct (Figure 

35). The carbon dioxide and the formaldehyde dimedone adduct were found 

to be non-radioactive in both the sodium C^^-formate and the 3-C^^-serine 
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O O 

CH^-rt-CHg-COgH 

CH3 cr 

Il * Il 
+ C02 

101 79 

Figure 35. Lead tetraacetate oxidation of dimethylglycine hydrochloride 

feeding experiments. Therefore the activity of the dimethylglycine hydro­

chloride obtained on degradation of the tazettine isolated from the sodium 

The Cg methoxyl group was shown to have 8% and the methylenedioxy 

group was shown to have 3% of the total radioactivity (Table 18) of the 

tazettine (12). The 6-phenylpiperonyl alcohol (101) obtained on degrad­

ation was shown to have only 4% of the total radioactivity of the tazet­

tine. Since this amount of radioactivity, within experimental error, 

had already been shown to be in the methylenedioxy group, no incorpora­

tion of sodium-C^^-formate occurred at the C„ position or in the aroma-
O 

tic or hydroaromatic rings of tazettine. The dimethylglycine hydro­

chloride obtained in the degradation was found to have 96% of the total 

C^^-formate or the 3-C^^-serine feeding experiment could only be attribu­

ted to the N-methyl group derived from tazettine. 

Tazettine Isolated From the Sodium C^^-Formate 

Feeding Experiment 
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Table 18. Degradation of tazettine from Spekelia formosissima in the 
sodium C^^-formate feeding experiment 

Compound Yield 
Amount used 
next rctn. 

Rel. 
act. 

Tazettine 1.25 g. 1.00 

Tazettine methiodide 1.58 g. 1.58 g. 0.93 

6-Phenylpiperonyl alcohol 350 mg. 0.04 

Dimethylglycine hydrochloride 150 mg. 12.49 mg. 0.96 

Formaldehyde dimedone adduct from 
dimethylglycine hydrochloride 

4.69 mg. 0.00 

Carbon dioxide from dimethylglycine 
hydrochloride 

0.00 

Methyltriethyl ammonium iodide 6.15 mg. 0.08 

Formaldehyde dimedone adduct from 
methylenedioxy determination 

19 mg. 0.03 

activity present in the tazettine. Since the and positions con­

tained no radioactivity, all of the activity must be in the N-methyl 

group of the dimethylglycine hydrochloride. These data (Table 19) prove 

that the major incorporation of sodium formate into tazettine occur­

red in the N-methyl group. 

Table 19. Per cent of total activity of tazettine isolated from the 
sodium C^^-formate feeding experiment in the methoxyl,. 
methylenedioxy and N-methyl groups and at position Cg 

Pos. of carbon in comp. % of total act. 

Cg Methoxyl group 8. 
Methylenedioxy group 3, 
N-Methyl group 96. 

Cg Position 0, 
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The different levels of incorporation of formate (Table 19) into 

the methoxyl, methylenedioxy and N-methyl groups may be explained by 

considering the metabolic pathway in Figure 36., which is based on 

previous biosynthetic studies. 

A high level of incorporation would be expected in the N-methyl 

group of the tazettine for incorporation at this position occurs in the 

last step of the metabolic pathway. A smaller amount of incorporation 

would be expected from the oxidative coupling of 0-methyl norbelladine 

(69) to form haemanthamine (58), which in turn undergoes oxidation and 

rearrangement to give tazettine. However, these data do not explain 

vftiy ambelline (78) and belladine (54b) apparently incorporate a large 

amount of sodium C^^-formate at the benzylic position of the C^-C^ 

unit while tazettine does not. If sodium C^^-formate were incorporated 

into tazettine at positions other than the one-carbon units, the process 

would presumably occur prior to formation of the norbelladine, since 

norbelladine is known to be incorporated intact into Amaryllidaceae 

alkaloids (Table 2). These data indicate such a metabolic sequence 

(Figure 30) either does not exist or is occurring at such a slow rate 

in Sprekelia formosissima during the period (7/8/1965 - 8/25/1965) of 

the sodium formate feeding experiment that detection of the process 

was unsuccessful. 
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H 

54a 

C"3°>^^ 

H 

69 

^^;Xy.OCH3 

^v-4-OH OH 

•» 

HO 
57 

OCH 

N—CH3 

OH 

12 

Figure 36. Biosynthesis of tazettine 
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Tazettine Obtained From the 3-C^^-Serine Feeding Experiment 

As previously stated, the formation of serine (95) from sodium 

formate and glycine (87) in plant tissues is well established^^ but 

75 the initial studies of Tolbert and Cohan , designed to show the conver­

sion of serine to glycine and formate, were unsuccessful. However, 

Wilkinson and Davies^^'^^ have been able to show that serine can be 

cleaved to give formate and glycine in plant tissues. These studies are 

in agreement with experiments showing 3-C^^-serine is an effective pre­

cursor of the one-carbon units of nicotine (104)^^ and gramine (105) 

90,91 

104 105 

On the basis of the previous studies with nicotine and gramine, the 

expected location of the radioactive labels in tazettine (12) obtained 

from the 3-C^^-serine feeding experiment would be the methoxyl, methylene-

dioxy and N-methyl groups. Furthermore, if the biosynthetic pathway 

(Figure 30) observed for the incorporation of sodivim-C^^-formate into 

ambelline (78) and belladine (54b) is valid, the tazettine would also 
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be expected to be labelled in the benzylic (Cg) position of the Cg-Cj^ 

unit. 

The radioactivities in the methoxyl, methylenedioxy and N-methyl 

groups and in position Cg of tazettine were determined in a manner 

identical to that used in the sodium C^^-formate feeding experiment 

(Table 20). Except for a slight increase in the per cent of radioactiv­

ity present in the methylendioxy group and a slight decrease in the 

activity present in the N-methyl group (Table 21), the results were 

identical to those obtained for tazettine isolated from the sodium C^^-

formate feeding experiment (Table 19). These data prove that the 3-0^^-

serine served as a one-carbon unit precursor almost as effectively as 

formate. Since sodium formate was not incorporated into the tazet­

tine at the Cg position, 3-C^^-serine would not be expected to be in­

corporated into this position. 

Table 20, Degradation of tazettine obtained from the 3-C^^-serine 
feeding experiment 

Amount used Rel. 
Compound Yield next rctn. act. 

Tazettine 901 mg. 1.00 
Tazettine methiodide 906 mg. 906 mg. 1.03 
6-Phenylpiperonyl alcohol 225 mg. 0.07 
Dimethylglycine hydrochloride 55 mg. 12 mg. 0.89 
Formaldehyde dimedone adduct from 3 mg. 0.00 

dimethylglycine hydrochloride 
Carbon dioxide - — — — 0.00 
Methyltriethyl ammonium iodide 5.47 mg. 0.08 
Formaldehyde dimedone adduct from 6.82 mg. 0.07 

methylenedioxy determination 
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Table 21. Per cent of the total activity of the tazettine isolated from 
the 3-cl^-serine feeding experiment in the methoxyl, methyl-
enedioxy and N-methyl groups and the Cg positions 

Pos. of carbon in comp. % of total act. 

Methoxy group. , 8. -

Methylenedioxy group 7. 

N-Methyl group 89. 

Cg-position ^ 0. 

It is clear from the experiments performed with Sprekelia formosis-

sima that both formate and serine serve solely as precursors of units 

such as methoxyl, methylenedioxy and N-methyl groups. This finding is 

in direct contrast to the sodium C^^-formate fed Nerine bowdenii, where 

a significant amount of the radioactivity appeared in the benzylic posi­

tion on the unit. It would seem desirable to repeat the experi­

ments with Nerine bowdenii to confirm the original observations of 

H. Ishii. 
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SUMMARY 

It has been shown that the Amaryllidaceae alkaloid ambelline, which 

has three oxygen substituents on the aromatic ring, is synthesized in the 

plant from the same precursors as those found for alkaloids containing 

only two aromatic oxygen atoms. Tyrosine was shown to be the precursor 

of the hydroaromatic Cg-Cg unit of ambelline, and phenylalanine serves 

as the aromatic Cg-C^ precursor. Evidence is presented that norbella-

dine is incorporated intact into ambelline and does not undergo cleavage 

to smaller fragments prior to incorporation. 

Sodium formate and serine serve as precursors of the methoxyl, 

N-methyl and methylenedioxy groups of tazettine. These precursors are 

shown not to be incorporated into either the or C^-Cg units of 

tazettine. This result is in contrast with that found previously in 

the incorporation of sodium formate into ambelline. 



www.manaraa.com

80a 

EXPERIMENTAL 

Source of Plant Materials and Radioactive Precursors 

The Nerine bowdenii bulbs were secured from the Walter Marx Gardens, 

Boring, Oregon. The Sprekelia formosissima bulbs were obtained from 

Robert D. Goedert, Jacksonville, Florida. 

The l,l'-C^^-norbelladine used in the Nerine bowdenii feeding 

experiment was synthesized by R, J, Highet (National Heart Institute, 

32 Bethesda, Maryland) . All other radioactive precursors (Tables 5 and 

17) were obtained from New England Nuclear Corp., Boston, Massachusetts. 

The radioactive precursors were assumed to have the purity established 

by New England Nuclear Corp. 

The author received the radioactive ambelline after isolation and 

separation of the alkaloids from Nerine bowdenii by Dr. William C. 

Wildman, National Heart Institute, Bethesda, Maryland. 

Measurement of the Radioactivities of the Compounds 

To determine the specific radioactivity (dpm/mM) of a compound, 

other than carbon dioxide, the material (1-6 mg.) was dissolved in 

1.0 ml. of methanol and 10.0 ml. of Bray's scintillation solution 

CôO g. of napthalene, 4 g. of l,4-bis-2-(5-phenyloxazôlyl)-benzene 
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(Packard) and 100 mg. of 2,5-diphenyloxazole (Packard) in 20 ml, of 

1,2-ethanediol, 100 ml. of methanol and sufficient dry, peroxide-free 

dioxane to make 1.0 1. of solutionj. The carbon dioxide was trapped 

in a solution of 2.0 ml. of hydroxide of Hyamine 10-X (Packard) and 

10.0 ml. of toluene POPOP scintillation solutionC 4 g. of l,4-bis-2-

(5-henyloxazoly)-benzene (Packard) and 100 mg. of 2,5-diphenyloxazole 

(Packard) in 1.0 1. of tolueneJ. To determine the relative specific 

activity of the carbon dioxide, the total disintegrations par minute 

for the trapping solution were compared with the theoretical disinte­

grations per minute attainable from a sample oif the material being de­

graded. All measurements of the radioactivities of the compounds were 

obtained with a Packard Tri-carb Liquid Scintillation Spectrometer 

System (Model 314 X). 

Nerine bowdenii Feeding Experiments . 

Purification of radioactive ambelline 

The. radioactive ambelline (Table 5), isolated from a feeding ex­

periment, was diluted with non-radioactive material and crystallized 

from absolute ethanol to give ambelline having a constant activity in 

the range 4,400-45,000 dpm/mM (Table 5). 



www.manaraa.com

81 

Degradation of. ambelline 

Ambelline was degraded to N-(2-methoxy-6-phenylpiperonyl) sarco-

sine hydrochloride by a general procedure in which the ratio of reagents 

to reactants was held constant in each experiment. All weights quoted 

were those obtained in the degradation of the ambelline from the 3-C^^-

tyrosine feeding experiment. 

Oxoambelline - A solution of 650 mg. of ambelline in 26 ml. of 

dry pyridine was added to a slurry of 1.3 g. of dry chromium trioxide 

in 13 ml. of dry pyridine. The reaction mixture was stirred for 20 

hours at room temperature and poured over ice. The excess chromium 

trioxide was reduced with sodium sulfite. The reaction mixture was 

made basic (pH=9) with sodium carbonate and extracted with chloroform 

until a negative silicotungstic acid test was obtained. The chloroform 

extract was washed with water, dried with anhydrous magnesium sulfate 

and evaporated to give 985 mg. of a brown oil. The oil was chromato-

graphed on 29.4 g. of Florisil packed in 25% ethyl acetate - 75% ben­

zene. Elution with 25% ethyl acetate -75% benzene gave 540 mg. of ox­

oambelline, which was not crystalline. The material was identified by 

its infrared spectrum which was identical with authentic material of 

oxoambelline. 

Oxoambelline methiodide To a solution of 450 mg. of oxoambel­

line in 3 ml. of acetone was added a large excess of methyl iodide. The 
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solution was allowed to stand for 12 hours and the precipitated oxoambel-

line was removed by filtration. The oxoambelline methiodide was crystal­

lized from 95% ethanol to give white crystals (350 mg^), m.p. 246-250°C, 

(dec.); reported, m.p. 250-254°C. (dec.). 

^ - ' 

N-(2-Methoxy-6-phenylpiperonvl) sarcosine hydrochloride A solu­

tion of 350 mg. of oxoambelline in 5 ml. of hot water was treated with 

1.5 ml. of 50% sodium hydroxide. The solution was heated on the steam 

bath for 1 hour and allowed to cool. The excess alkali was decanted 

from the brown gum that had formed and the brown gum was dissolved in 

3 ml. of 6N hydrochloric acid. The resulting solution was saturated 

with sodium chloride and extracted five times with chloroform. Evapora­

tion of the chloroform gave 231 mg. of a product which was crystallized 

from methanol-acetone, m.p. 185-187°C, mixed m.p, 185-187°C. with an 

authentic sample of N-(2-methoxy-6-phenylpiperonyl) sarcosine hydro­

chloride. 

Degradation of N-(2-methoxy-6-phenvlpiperonvl) sarcosine hydrochloride 
by procedure A 

The ratio of reagents to reactants was held constant for each de­

gradation of N-(2-methoxy-6-phenylpiperonyl) sarcosine hydrochloride by 

procedure A. All weights quoted were those obtained in the degradation 

of the ambelline from the 3-C^^-tyrosine feeding experiment. 

3-Methoxv-2-methvl-4,5-methylenedioxybiphenyl and N-tosyl-sarco-
sine A solution of 200 mg. of N-(2-methoxy-6-phenylpiperonyl) sar­

cosine hydrochloride in 30 ml. of absolute ethanol and 0.5 ml. of glacial 

acetic acid was hydrogenated with 833 mg. of pre-equilibrated palladium-
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at room temperature. The uptake of hydrogen was 1.5 equivalents. The 

reaction mixture was filtered. The filtrate was diluted with 20 ml. of 

water and extracted five times with ether. The ether extract was washed 

three times with water and dried with anhydrous magnesium sulfate. 

Evaporation of the ether gave 82 mg. of a brown oil, which was distilled 

at 110°C. (0.05 mm.). The oil had an infrared spectrum identical with 

an authentic sample of 3-methoxy-2-methyl-4,5-methylenedioxybiphenyl. 

The aqueous raffinate was condensed to one-third of its volume, and 

the solution was made basic (pH=ll) with 2.5N sodium hydroxide. A solu­

tion of 1.838 g. of £-toluene sulfonyl chloride in 54 ml. of benzene 

was added and the emulsion was stirred for 24 hours at room temperature. 

The alkaline water layer was separated from the benzene layer. The 

aqueous solution was extracted five times with ether, made acidic (pH=l) 

with 1.5N hydrochloric acid and extracted five times with chloroform. 

Evaporation of the chloroform gave 99 mg. of a solid which was crystal­

lized from acetone-cyclohexane, m.p. 144-146°C., mixed m.p. 144-145°C. 

with an authentic sample of N-tosyl sarcosine. 

Electrolytic degradation of N-tosylsarcosine To 8 ml. of com­

mercial ethanol (95%) in a three necked, round-bottomed flask (Figure 37) 

was added 19.75 mg. of N-tosylsarcosine and 3 mg. of sodium hydride. 

The 250 ml., three-necked, round-bottomed flask (Figure 37) contained 

two platinum electrodes (0.5 cm. x 1 cm.), 1 cm. apart and mounted 0.5 cm. 

from the bottom of the flask. The flask (Figure 37) was fitted with a 

nitrogen inlet and an outlet attached to a trap containing 2 ml. of 
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Figure 37. Apparatus for electrolytic degradation of N-tosylsarcosine 

Hyamine hydrodide 10-X (Packard) and 10 ml. of standard toluene POPOP 

scintillation solution. The reaction mixture was electrolysed for 60 

hours at 90 m, amps. The carbon dioxide generated was trapped in the 

scintillation solution and its total radioactivity (765 dpm) determined 

In a second electrolytic degradation a solution of 50 mg. of N-

tosylsarcosine and 6 mg. of sodium hydride in 20 ml. of water was elec-

troiyzed for 16.5 hours at 20 mi amps. To the solution was added 5 ml. 

of concentrated hydrochloric acid and 100 mg. of dimedone, and the solu 

tion was refluxed for 3.5 hours. The solution was allowed to cool and 
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the cold solution was extracted with chloroform. Evaporation of the 

chloroform gave a residue which was heated in water to remove excess 

dimedone. The brown gum remaining after filtration was sublimed to 

give a solid. The sublimate was heated in water, filtered and resub­

limed to give white crystals (5 mg.), m.p, 189-191°C., mixed m.p. 187-

188°C with an authentic sample of formaldehyde dimedone adduct. 

Degradation of N-(2-methoxv-6-phenvlpiperonvl) sarcosine hydrochloride 
by procedure B 

The ratio of reagents to reactants was held constant for each de­

gradation of N-(2-methoxy-6-phenylpiperonyl) sarcosine hydrochloride by 

procedure B, All weights quoted were those obtained in the degradation 

of the ambelline from the 2-C^^-tyrosine feeding experiment. 

Lead tetraacetate oxidation of N-(2-methoxy-6-phenylpiperonyl) 
sarcosine hydrochloride To 15 mg. of N-(2-methoxy-6-phenylpiperonyl) 

sarcosine hydrochloride in a three-necked, round-bottomed flask (Figure 

38) was added 10.0 ml. of freshly prepared 0.67% lead tetraacetate-

glacial acetic acid solution. The three-necked flask (Figure 38) was 

fitted with a nitrogen inlet"and a condenser. The condenser w^ fitted 

with a nitrogen outlet leading to a trap containing a 90% saturated 

dimedone solution and a second trap containing 2 ml. of Hyamine hydrox­

ide 10-X (Packard) and 10 ml, of standard toluene POPOP scintillation 

solution. The reaction mixture was heated on a steam bath for 2 hours 

38 minutes. The formaldehyde dimedone adduct was separated from the 

dimedone solution by filtration, heated with water and sublimed at 

140°C. (0.01 mm.), to give 1>.55 mg. of radioactive formaldehyde dimedone 
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Figure 38. Apparatus for lead tetraacetate oxidation of N-(2-inethoxy-
6-phenylpiperonyl) sarcosine hydrochloride 

adduct, m.p. 190-191°C., mixed m.p. 190-191°C. with authentic material. 

The carbon dioxide produced in the reaction was trapped in toluene 

POPOP scintillation solution. 

Determination of per cent impurities in radioactive formaldehyde 
dimedone adduct obtained from the lead tetraacetate oxidation of N-(2^. 
methoxy-6-phenylpiperonvl) sarcosine hydrochloride To a three-necked 

round-bottomed flask connected to apparatus previously described 

(Figure 38) was added 10.0 ml. of the freshly prepared 0.67% lead 
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tetraacetate-glacial acetic acid solution used in the oxidation of the 

N-(2-methoxy-6-phenylpiperonyl) sarcosine hydrochloride. The solution 

was heated on the steam bath for 2 hours 38 minutes. The non-radioactive 

formaldehyde generated was trapped in 90% saturated dimedone solution. 

The non-radioactive formaldehyde dimedone adduct was separated from the 

dimedone solution by filtration, heated with water and sublimed at 

140°C, (0,01 mm.) to give 1.81 mg. of material, m.p. 191-192°C. The 

non-radioactive formaldehyde dimedone adduct (1.81 mg.) was equivalent 

to an impurity of 32.6% in the radioactive formaldehyde dimedone adduct 

obtained in the lead tetraacetate oxidation of the N-(2-methoxy-6-

phenylpiperonyl) sarcosine hydrochloride. 

In the l,l'-C^^-norbelladine feeding experiment, 4.64 mg. of radior 

active formaldehyde dimedone adduct was obtained from the lead tetraace­

tate oxidation of the N-(2-methoxy-6-phenylpiperonyl) sarcosine hydro­

chloride and was shown to contain 1.45 mg. of non-radioactive formalde­

hyde dimedone adduct, equivalent to an impurity of 31.3% in the radio­

active formaldehyde dimedone adduct. 

Ambelline hydrochloride 

Hydrogen chloride was bubbled into 0,75 ml. of an ethanolic solu-

14 tion of ambelline (60 mg.) obtained from the 3-C -phenylalanine feeding 

experiment. On evaporation of the ethanol with a stream of air gave 

crystals of ambelline hydrochloride (66 mg.) which were crystallized 

from acetone to constant activity (4,580 dpm/mM), m.p, 227-231°C. 

(dec,); reported, m,p, 227-230°C, (dec.), 
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A solution of the radioactive ambelline hydrochloride in water was 

made basic (pH=ll) with 10% sodium hydroxide and extracted with chloro­

form. Evaporation of the chloroform gave 56 mg. of ambelline, (m.p. 

259-261°C.); reported, m.p. 260-261°C. (dec.). 

Methylenedioxy determination 

To 110 mg. of ambelline and 336 mg. of dimedone in a centrifuge 

tube was added 5.5 ml. of sulfuric acid (60 ml. of concentrated sulfuric 

acid per 100 ml. of water). The reaction mixture was heated on a steam 

bath for 15 hours, diluted with 20 ml. of water and extracted five times 

with ether. The ether extract was dried with calcium chloride and evapo­

rated to give a brown residue. The residue was heated with 10 ml. of 

water to remove water-soluble material and filtered. The brown residue 

was sublimed to give 34 mg. of a solid, m.p. 189-191°C. The sublimate 

was heated with 5 ml. of water for 15 minutes, filtered and resublimed 

to give white crystals, m.p. 190-191°C., identical with an authentic 

sample of formaldehyde dimedone adduct. 

Zeisel determination 

A solution of 0.5 ml. of 5% cadmium sulfate and 0.5 ml. of 5% 

sodium thiosulfate was placed in the iodine trap B (Figure 3). A solu­

tion of 5 ml. of 5% triethyl amine in absolute ethanol was placed in 

trap C (Figure 39) to trap the methyl iodide generated in the reaction 

as methyltriethyl ammonium iodide. Trap C (Figure 39) was emerseM in a 

dry ice-chloroform bath at -30°C, 

To 18 mg. of ambelline and 500 mg. of phenol, in flask A (Figure 39) 
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Figure 39. Apparatus for Zeisel determination 
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was added 2.0 ml. of 57% hydrolodic acid. Flask A was then connected 

to the nitrogen source and heated 45 minutes at 125-132°C. in a Wood's 

metal bath. After the reaction was completed, trap C (Figure 39) was 

detached from the apparatus at point D (Figure 39) --a rubber joint --

and stored under nitrogen for 12 hours. The ethanol-triethy1 amine 

solution was evaporated by vacuum (aspirator) distillation to give a 

solid. The material was crystallized from methanol-ether to give 12.5 

mg. of methyltriethyl ammonium iodide, m.p. 277-280°C, (dec.), identical 

with an authentic sample of the material. 

u Synthesis of 2-C, -N-tosylsarcosine 

To a solution of 1 g. of non-radioactive glycine and 0.8 mg. of 

2-C^^-glycine in 300 ml. of water, adjusted to pH=ll with 10% sodium 

hydroxide, was added a solution of 20 g. of £-toluene,sulfonyl chloride 

in 600 ml. of benzene. The emulsion was stirred for 20 hours at room 

temperature. The water layer was separated from the benzene layer. The 

aqueous solution was made basic (pH=ll) with 10% sodium hydroxide and 

extracted with ether. The water layer was made acidic (pH=l) with 6N 

hydrochloric acid and extracted with chloroform. Evaporation of the 

chloroform gave a solid, which was dissolved in 95% ethanol. To the 

ethanol solution was added 1 ml. of 50% potassium hydroxide and 2 ml. of 

methyl iodide. White crystals precipitated and were removed by filtra­

tion. A solution of the precipitate in water was acidified (pH=l) with 

6N hydrochloric acid and the solution was extracted with chloroform. 

Evaporation of the chloroform gave 7 mg. of material \^ich was sublimed 

to give white crystals, m.p. 145-148°C., mixed m.p, with N-tosylglycine, 
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115-140°C., mixed m.p. with N-tosysarcosine 145-148°C, The crystals 

were diluted with 300 mg. of non-radioactive N-tosylsarcosine and cry­

stallized to constant activity (209,500 dpm/nM) from acetone-cyclohexane. 

Determination of formaldehyde with chromotropic acid 

To a three-necked, round-bottomed flask connected to the apparatus 

previously described (Figure 38) was added 10.0 ml. of 0.67% freshly 

/prepared lead tetraacetate-glacial acetic acid "solution. The solution 

was heated on the steam bath for 3.00 hours. The formaldehyde generated 

was trapped in 10,0 ml. of water. 

To 104 mg. of chromotropic acid in a 30 ml. beaker was added 1.00 

ml. of the formaldehyde-water solution of unknown concentration. The 

solution was heated on a hot plate at 175°C. until all of the moisture 

had disappeared from the beaker. The material in the beaker was Heated 

for an additional 5 minutes at 175° C. The beaker was allowed to cool 

and 5.0 ml, of concentrated sulfuric acid were added. The material was 

heated for 30 minutes in boiling water to give a purple solution. The 

purple solution was allowed to cool and was diluted to 50 ml. in a 

volumetric flask. The absorption of the purple solution at 570 m/< 

measured. 

The above procedure was repeated with three formaldehyde-water solu­

tions having concentrations of 78 /«g./ml., 39 /ig. /ml. and 19.5/*g./ml, 

The three purple solutions obtained showed a linear relationship between 

absorption at 570 m/<, and concentration of the formaldehyde-water solution 

from which they were made. The formaldehyde-water solution of unknown con 

centration was shown to contain 63.1/<g. of formaldehyde per milliliter. 
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Sprekelia formosissima Feeding Experiments 

The same experimental procedures were used in isolating and de­

grading tazettine from the sodium formate and the 3-C^^-serine 

feeding experiments. All weights quoted were those obtained in the 

isolation and degradation of tazettine from the sodium-C^^-formate 

feeding experiment. 

Feeding experiments 

The sodium C^^-formate (1.0 mc., 17.0 mg.) was dissolved in 1.0 ml. 

of water. Into each of ten Sprekelia formosissima bulbs was injected, 

1  /  
with a microsyringe, 0.1 ml. of the sodium C -formate solution. The 

radioactive vial was washed with 0.2 ml. of water and the water injected 

into an eleventh bulb. After allowing the plants to grow for a period 

of 48 days (7/8/1965 - 8/25/1965) the bulbs (667 g.) were harvested and 

the alkaloids isolated in the usual manner. 

The 3-C^^-serine (0,5 mc. 13.7 mg.) was dissolved in 1.0 ml. of 

14 
water. The 3-C -serine feeding experiment was identical to the sodium 

C^^-formate feeding experiment in all other respects. The bulbs (643 g.) 

were harvested and the alkaloids isolated in the usual manner. 

General procedure for isolation of the crude alkaloids from Sprekelia 
formosissima bulbs 

The eleven bulbs (667 g.) were homogenized with 2 1. of 95% ethanol 

in a Waring Blendor. The mixture was allowed to settle for 30 minutes 

and the solid material removed by filtration. The filter cake was stirred 

in 2 1. of 95% ethanol and allowed to stand overnight. The solid 
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material was removed by filtration. The process was repeated a third 

time. The three filtrates were combined and concentrated to 1.0 1. by 

aspirator vacuum distillation under a nitrogen atmosphere. The re­

maining ethanol was removed on a rotatory evaporator to yield 21 g. of 

residue from the sodium C^^-formate feeding experiment and 11.7 g. of 

14 residue from the 3-C -serine feeding experiment. 

The crude residue (21 g.) was stirred at 50° C, with 250 ml. of 

2N hydrochloric acid and filtered to remove the acid-insoluble.material. 

The insoluble material was heated with 100 ml. of 2N hydrochloric acid 

and refiltered. The filtrates were combined and extracted 5 times with 

chloroform. The chloroform extract gave a negative alkaloid test with 

silicotungstic acid and was discarded. 

The 2N hydrochloric acid solution was made basic (pH=»12) with 50% 

sodium hydroxide and extracted with chloroform until the aqueous- solu­

tion gave a negative alkaloid test. The chloroform extract of the 

basic solution was evaporated on a rotovaporator to give 646 mg. (0,097% 

of the total weight of the bulbs) of a crude alkaloid mixture from the 

sodium formate feeding experiment. The 3-C^^-serine feeding ex­

periment afforded 440 mg. (0.069% of the total weight of the bulbs) of 

a crude alkaloid mixture. 

Thin-layer and gas-phase analysis proved the crude alkaloid mix­

tures to contain primarily tazettine and traces of haemanthamine, hae-

manthidine and lycoramine. 
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Separation of tazettine from the crude alkaloid mixture 

The crude alkaloid mixture (646 mg.) was dissolved in acetone and 

allowed to stand for a period of 3 days. The tazettine that had pre­

cipitated was removed by filtration. The filtrate was evaporated to 

give a residue, which was dissolved in 25% benzene-75% chloroform and 

chromatographed on an alumina O^erck-neutral) column (17.5 cm x 1.5 cm) 

packed in 25% benzene-75% chloroform. Elution with 25% benzene-75% 

chloroform gave lycoramine first, haemanthamine second and then tazet­

tine. Elution with chloroform and 1%, 2%, 5% and 10% methanol-chloro-

form solutions gave no characterizable products. Elution with 20% 

methanol-80% chloroform gave a mixture containing haemanthidine. 

A total yield of 263 mg. of tazettine, m.p. 207-209°C., (317,000 

dpm/mM) obtained from the sodium formate feeding experiment was 

diluted with 1.017 g. of non-radioactive tazettine and crystallized to 

constant activity, 66,200 dpm/mM (1.25g.), m.p. 209-210°C.; reported 

m.p. 208-210°C. -

A total yield of 220 mg. of impure tazettine (m.p. 204-209°C,, 

224,100 dpm/mM) was isolated from the crude alkaloid mixture (440 mg.) 

from the 3-C^^-serine feeding experiment. This material was recrystal-

lized from acetone. To the filtrate was added 100 mg. of non-radioactive 

tazettine, and the material was recrystallized to give a second crop of 

radioactive tàzéttige. The process was repeated with the second fil­

trate to give a third crop of radioactive tazettine. The three crops 

of radioactive tazettine were combined, diluted with 880 mg. of non­

radioactive tazettine and crystallized to constant activity, 23,300 
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dpm/mM (1.223 g.), m.p. 209-210°C.; reported, m}p. 208-210°C. 

Zeisel determination 

The Zeisel determination was conducted in the apparatus shown in 

Figure 39 with the traps B and C containing the prescribed reagents. To 

22 mg. of tazettine and 500 mg. of phenol in flask A (Figure 39) was 

added 2.0 ml, of 57% hydroiodic acid. Flask A (Figure 39) was then 

connected to the nitrogen source and heated 45 minutes at 125-132°G. 

in a Wood's metal bath. After the reaction was completed, trap C 

(Figure 39) was detached from the apparatus at point D (Figure 39) —-

a rubber joint — and stored under nitrogen for 12 hours. 

The ethanol-triethyl amine solution was evaporated under reduced 

pressure. The methyltriethyl ammonium iodide (6.15 mg.) .was crystallized 

from methanol-ether and dried under vacuum at room temperature. ' 

Methylenedioxy de terminâti on 

To 103 mg. of tazettine and 308 mg. of dimedone in a centrifuge 

tube was added 5 ml. of sulfuric acid (60 ml. of sulfuric acid in 100 ml. 

of water). The reaction mixture was heated on a steam bath for 16 hours, 

added to 25 ml. of water and heated to dissolve excess dimedone. The 

hot solution was filtered and the brown residue reheated in 5 ml. of 

water to remove further,dimedone. The hot solution was filtered and the 

brown residue sublimed at 140 C. (0.01 mm.). The sublimate was heated 

in water, filtered and resublimed to give white crystals (19 mg.), m.p, 

191^192°C,, identical with an authentic sample of formaldehyde dimedone 

adduct. 
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Degradation of tazettine 

Tazettine (850 mg., 66,200 dpm/mM) from the sodium C^^-formate 

feeding experiment was diluted with non-radioactive tazettine (702 mg.) 

and crystallized from acetone to give tazettine having an activity of 

36,100 dpm/mM, The tazettine (23,300 dpm/mM) obtained from the 3-C%4_ 

serine feeding experiment was not diluted further prior to degradation. 

Tazettine methiodide To a solution of 1.25 g. of tazettine in 

50 ml. of acetone was added a large excess of methyliodide, and the 

solution was allowed to reflux for 2 hours. The acetone solution was 

concentrated until tazettine methiodide precipitated. The solution was 

cooled and filtered. The tazettine methiodide (1,58 g.) was recrystal-

lized from methanol-acetone-ether to give white crystals, m.p. 238-239°C, 

(dec,); reported, m.p, 238°C, (dec.), ? 

Dimethylglycine hydrochloride and 6-phenylpiperonvl alcohol To 

a solution of 1.58 g. of tazettine methiodide in water was added a 

large excess of freshly prepared neutral silver hydroxide and the mix­

ture stirred with a magnetic stirrer for 15 minutes. The reaction mix­

ture was filtered. The filtrate gave a negative iodide ion test with 

acidic silver nitrate. The filtrate was evaporated on a rotovaporator 

and pyrolyzed 1 hour on the steam bath under aspirator vacuum to give 

1.1 g. of tazettine methine, which was not crystalline. The material 

was identified by its infrared spectrum which was identical with an 

authentic sample of tazettine methine. 

To a methanolic solution (15 ml.) of the methine was added 3 ml. of 
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2.5N sodium hydroxide. The reaction mixture was heated for 1 hour on 

the steam bath and added to 20 ml, of cold water. The water emulsion 

was extracted six times with ether. Evaporation of the ether gave a 

solid which was crystallized from ether to give 350 mg. of 6-phenyl-

piperonyl alcohol, m.p. 98-99°C., identical with an authentic sample. 

The water raffinate, remaining after the ether extraction, was 

acidified with 6N hydrochloric acid and evaporated on a rotovaporator 

to give a mixture of sodium chloride and dimethyIglycine hydrochloride. 

The dimethylglycine hydrochloride was removed from the sodium chloride 

by sublimation at 145-150°C. (0.01 mm.). Resublimation of the dimethyl­

glycine hydrochloride yielded white crystals (150 mg.), m.p. 184-185°C., 

identical with an authentic sample of dimethylglycine hydrochloride. 

Lead tetraacetate oxidation of dimethylglycine hydrochloride ' To 

12.49 mg. of dimethylglycine hydrochloride in a three-necked, round-

bottomed flask connected to the apparatus previously described (Figure 

38) was added 10.0 ml. of 0.67% lead tetraacetate-glacial acetic acid 

solution. The first trap contained a 90% saturated dimedone solution, 

and the second trap contained a 90% barium hydroxide solution. The 

flask was heated on the steam bath for 30 minutes. 

The formaldehyde dimedone adduct was separated from the dimedone 

solution by filtration, heated with water and sublimed at 140°C. 

(0.01 mm.). The sublimed material was heated in water, filtered and 

resublimed to give 4.69 mg. of formaldehyde dimedone adduct, m.p. 191-

192°C., identical with an authentic sample of the material. 
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The carbon dioxide trapped as barium carbonate was separated from 

the barium hydroxide solution by filtration, washed with distilled water 

and then washed with methanol. The barium carbonate was dried under 

vacuum. To 12,31 mg.of the barium carbonate in a three necked, round-

bottomed flask (Figure 38) was'added a large excess of 6N hydrochloric 

acid. The carbon dioxide, generated in an apparatus identical to that 

used in the lead tetraacetate oxidation reaction (Figure 38), was 

trapped in 1,0 ml. of Hyamine hydroxide 10-X (Packard) and 10 ml. of 

toluene POPOP scintillation solution. The nitrogen stream was allowed 

to bubble into the scintillation solution for a period of 30 minutes 

following disappearance of the barium carbonate in the reaction flask 

(Figure 38). . 
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